Implement a reverse proxy using grpc-gateway

This commit is contained in:
Marc Di Luzio 2020-06-13 00:23:21 +01:00
parent 7ababb79f6
commit 8c6230ca20
22 changed files with 3122 additions and 802 deletions

186
proto/google/rpc/code.proto Normal file
View file

@ -0,0 +1,186 @@
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.rpc;
option go_package = "google.golang.org/genproto/googleapis/rpc/code;code";
option java_multiple_files = true;
option java_outer_classname = "CodeProto";
option java_package = "com.google.rpc";
option objc_class_prefix = "RPC";
// The canonical error codes for Google APIs.
//
//
// Sometimes multiple error codes may apply. Services should return
// the most specific error code that applies. For example, prefer
// `OUT_OF_RANGE` over `FAILED_PRECONDITION` if both codes apply.
// Similarly prefer `NOT_FOUND` or `ALREADY_EXISTS` over `FAILED_PRECONDITION`.
enum Code {
// Not an error; returned on success
//
// HTTP Mapping: 200 OK
OK = 0;
// The operation was cancelled, typically by the caller.
//
// HTTP Mapping: 499 Client Closed Request
CANCELLED = 1;
// Unknown error. For example, this error may be returned when
// a `Status` value received from another address space belongs to
// an error space that is not known in this address space. Also
// errors raised by APIs that do not return enough error information
// may be converted to this error.
//
// HTTP Mapping: 500 Internal Server Error
UNKNOWN = 2;
// The client specified an invalid argument. Note that this differs
// from `FAILED_PRECONDITION`. `INVALID_ARGUMENT` indicates arguments
// that are problematic regardless of the state of the system
// (e.g., a malformed file name).
//
// HTTP Mapping: 400 Bad Request
INVALID_ARGUMENT = 3;
// The deadline expired before the operation could complete. For operations
// that change the state of the system, this error may be returned
// even if the operation has completed successfully. For example, a
// successful response from a server could have been delayed long
// enough for the deadline to expire.
//
// HTTP Mapping: 504 Gateway Timeout
DEADLINE_EXCEEDED = 4;
// Some requested entity (e.g., file or directory) was not found.
//
// Note to server developers: if a request is denied for an entire class
// of users, such as gradual feature rollout or undocumented whitelist,
// `NOT_FOUND` may be used. If a request is denied for some users within
// a class of users, such as user-based access control, `PERMISSION_DENIED`
// must be used.
//
// HTTP Mapping: 404 Not Found
NOT_FOUND = 5;
// The entity that a client attempted to create (e.g., file or directory)
// already exists.
//
// HTTP Mapping: 409 Conflict
ALREADY_EXISTS = 6;
// The caller does not have permission to execute the specified
// operation. `PERMISSION_DENIED` must not be used for rejections
// caused by exhausting some resource (use `RESOURCE_EXHAUSTED`
// instead for those errors). `PERMISSION_DENIED` must not be
// used if the caller can not be identified (use `UNAUTHENTICATED`
// instead for those errors). This error code does not imply the
// request is valid or the requested entity exists or satisfies
// other pre-conditions.
//
// HTTP Mapping: 403 Forbidden
PERMISSION_DENIED = 7;
// The request does not have valid authentication credentials for the
// operation.
//
// HTTP Mapping: 401 Unauthorized
UNAUTHENTICATED = 16;
// Some resource has been exhausted, perhaps a per-user quota, or
// perhaps the entire file system is out of space.
//
// HTTP Mapping: 429 Too Many Requests
RESOURCE_EXHAUSTED = 8;
// The operation was rejected because the system is not in a state
// required for the operation's execution. For example, the directory
// to be deleted is non-empty, an rmdir operation is applied to
// a non-directory, etc.
//
// Service implementors can use the following guidelines to decide
// between `FAILED_PRECONDITION`, `ABORTED`, and `UNAVAILABLE`:
// (a) Use `UNAVAILABLE` if the client can retry just the failing call.
// (b) Use `ABORTED` if the client should retry at a higher level
// (e.g., when a client-specified test-and-set fails, indicating the
// client should restart a read-modify-write sequence).
// (c) Use `FAILED_PRECONDITION` if the client should not retry until
// the system state has been explicitly fixed. E.g., if an "rmdir"
// fails because the directory is non-empty, `FAILED_PRECONDITION`
// should be returned since the client should not retry unless
// the files are deleted from the directory.
//
// HTTP Mapping: 400 Bad Request
FAILED_PRECONDITION = 9;
// The operation was aborted, typically due to a concurrency issue such as
// a sequencer check failure or transaction abort.
//
// See the guidelines above for deciding between `FAILED_PRECONDITION`,
// `ABORTED`, and `UNAVAILABLE`.
//
// HTTP Mapping: 409 Conflict
ABORTED = 10;
// The operation was attempted past the valid range. E.g., seeking or
// reading past end-of-file.
//
// Unlike `INVALID_ARGUMENT`, this error indicates a problem that may
// be fixed if the system state changes. For example, a 32-bit file
// system will generate `INVALID_ARGUMENT` if asked to read at an
// offset that is not in the range [0,2^32-1], but it will generate
// `OUT_OF_RANGE` if asked to read from an offset past the current
// file size.
//
// There is a fair bit of overlap between `FAILED_PRECONDITION` and
// `OUT_OF_RANGE`. We recommend using `OUT_OF_RANGE` (the more specific
// error) when it applies so that callers who are iterating through
// a space can easily look for an `OUT_OF_RANGE` error to detect when
// they are done.
//
// HTTP Mapping: 400 Bad Request
OUT_OF_RANGE = 11;
// The operation is not implemented or is not supported/enabled in this
// service.
//
// HTTP Mapping: 501 Not Implemented
UNIMPLEMENTED = 12;
// Internal errors. This means that some invariants expected by the
// underlying system have been broken. This error code is reserved
// for serious errors.
//
// HTTP Mapping: 500 Internal Server Error
INTERNAL = 13;
// The service is currently unavailable. This is most likely a
// transient condition, which can be corrected by retrying with
// a backoff.
//
// See the guidelines above for deciding between `FAILED_PRECONDITION`,
// `ABORTED`, and `UNAVAILABLE`.
//
// HTTP Mapping: 503 Service Unavailable
UNAVAILABLE = 14;
// Unrecoverable data loss or corruption.
//
// HTTP Mapping: 500 Internal Server Error
DATA_LOSS = 15;
}

View file

@ -0,0 +1,200 @@
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.rpc;
import "google/protobuf/duration.proto";
option go_package = "google.golang.org/genproto/googleapis/rpc/errdetails;errdetails";
option java_multiple_files = true;
option java_outer_classname = "ErrorDetailsProto";
option java_package = "com.google.rpc";
option objc_class_prefix = "RPC";
// Describes when the clients can retry a failed request. Clients could ignore
// the recommendation here or retry when this information is missing from error
// responses.
//
// It's always recommended that clients should use exponential backoff when
// retrying.
//
// Clients should wait until `retry_delay` amount of time has passed since
// receiving the error response before retrying. If retrying requests also
// fail, clients should use an exponential backoff scheme to gradually increase
// the delay between retries based on `retry_delay`, until either a maximum
// number of retires have been reached or a maximum retry delay cap has been
// reached.
message RetryInfo {
// Clients should wait at least this long between retrying the same request.
google.protobuf.Duration retry_delay = 1;
}
// Describes additional debugging info.
message DebugInfo {
// The stack trace entries indicating where the error occurred.
repeated string stack_entries = 1;
// Additional debugging information provided by the server.
string detail = 2;
}
// Describes how a quota check failed.
//
// For example if a daily limit was exceeded for the calling project,
// a service could respond with a QuotaFailure detail containing the project
// id and the description of the quota limit that was exceeded. If the
// calling project hasn't enabled the service in the developer console, then
// a service could respond with the project id and set `service_disabled`
// to true.
//
// Also see RetryDetail and Help types for other details about handling a
// quota failure.
message QuotaFailure {
// A message type used to describe a single quota violation. For example, a
// daily quota or a custom quota that was exceeded.
message Violation {
// The subject on which the quota check failed.
// For example, "clientip:<ip address of client>" or "project:<Google
// developer project id>".
string subject = 1;
// A description of how the quota check failed. Clients can use this
// description to find more about the quota configuration in the service's
// public documentation, or find the relevant quota limit to adjust through
// developer console.
//
// For example: "Service disabled" or "Daily Limit for read operations
// exceeded".
string description = 2;
}
// Describes all quota violations.
repeated Violation violations = 1;
}
// Describes what preconditions have failed.
//
// For example, if an RPC failed because it required the Terms of Service to be
// acknowledged, it could list the terms of service violation in the
// PreconditionFailure message.
message PreconditionFailure {
// A message type used to describe a single precondition failure.
message Violation {
// The type of PreconditionFailure. We recommend using a service-specific
// enum type to define the supported precondition violation types. For
// example, "TOS" for "Terms of Service violation".
string type = 1;
// The subject, relative to the type, that failed.
// For example, "google.com/cloud" relative to the "TOS" type would
// indicate which terms of service is being referenced.
string subject = 2;
// A description of how the precondition failed. Developers can use this
// description to understand how to fix the failure.
//
// For example: "Terms of service not accepted".
string description = 3;
}
// Describes all precondition violations.
repeated Violation violations = 1;
}
// Describes violations in a client request. This error type focuses on the
// syntactic aspects of the request.
message BadRequest {
// A message type used to describe a single bad request field.
message FieldViolation {
// A path leading to a field in the request body. The value will be a
// sequence of dot-separated identifiers that identify a protocol buffer
// field. E.g., "field_violations.field" would identify this field.
string field = 1;
// A description of why the request element is bad.
string description = 2;
}
// Describes all violations in a client request.
repeated FieldViolation field_violations = 1;
}
// Contains metadata about the request that clients can attach when filing a bug
// or providing other forms of feedback.
message RequestInfo {
// An opaque string that should only be interpreted by the service generating
// it. For example, it can be used to identify requests in the service's logs.
string request_id = 1;
// Any data that was used to serve this request. For example, an encrypted
// stack trace that can be sent back to the service provider for debugging.
string serving_data = 2;
}
// Describes the resource that is being accessed.
message ResourceInfo {
// A name for the type of resource being accessed, e.g. "sql table",
// "cloud storage bucket", "file", "Google calendar"; or the type URL
// of the resource: e.g. "type.googleapis.com/google.pubsub.v1.Topic".
string resource_type = 1;
// The name of the resource being accessed. For example, a shared calendar
// name: "example.com_4fghdhgsrgh@group.calendar.google.com", if the current
// error is [google.rpc.Code.PERMISSION_DENIED][google.rpc.Code.PERMISSION_DENIED].
string resource_name = 2;
// The owner of the resource (optional).
// For example, "user:<owner email>" or "project:<Google developer project
// id>".
string owner = 3;
// Describes what error is encountered when accessing this resource.
// For example, updating a cloud project may require the `writer` permission
// on the developer console project.
string description = 4;
}
// Provides links to documentation or for performing an out of band action.
//
// For example, if a quota check failed with an error indicating the calling
// project hasn't enabled the accessed service, this can contain a URL pointing
// directly to the right place in the developer console to flip the bit.
message Help {
// Describes a URL link.
message Link {
// Describes what the link offers.
string description = 1;
// The URL of the link.
string url = 2;
}
// URL(s) pointing to additional information on handling the current error.
repeated Link links = 1;
}
// Provides a localized error message that is safe to return to the user
// which can be attached to an RPC error.
message LocalizedMessage {
// The locale used following the specification defined at
// http://www.rfc-editor.org/rfc/bcp/bcp47.txt.
// Examples are: "en-US", "fr-CH", "es-MX"
string locale = 1;
// The localized error message in the above locale.
string message = 2;
}

View file

@ -0,0 +1,92 @@
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.rpc;
import "google/protobuf/any.proto";
option go_package = "google.golang.org/genproto/googleapis/rpc/status;status";
option java_multiple_files = true;
option java_outer_classname = "StatusProto";
option java_package = "com.google.rpc";
option objc_class_prefix = "RPC";
// The `Status` type defines a logical error model that is suitable for different
// programming environments, including REST APIs and RPC APIs. It is used by
// [gRPC](https://github.com/grpc). The error model is designed to be:
//
// - Simple to use and understand for most users
// - Flexible enough to meet unexpected needs
//
// # Overview
//
// The `Status` message contains three pieces of data: error code, error message,
// and error details. The error code should be an enum value of
// [google.rpc.Code][google.rpc.Code], but it may accept additional error codes if needed. The
// error message should be a developer-facing English message that helps
// developers *understand* and *resolve* the error. If a localized user-facing
// error message is needed, put the localized message in the error details or
// localize it in the client. The optional error details may contain arbitrary
// information about the error. There is a predefined set of error detail types
// in the package `google.rpc` that can be used for common error conditions.
//
// # Language mapping
//
// The `Status` message is the logical representation of the error model, but it
// is not necessarily the actual wire format. When the `Status` message is
// exposed in different client libraries and different wire protocols, it can be
// mapped differently. For example, it will likely be mapped to some exceptions
// in Java, but more likely mapped to some error codes in C.
//
// # Other uses
//
// The error model and the `Status` message can be used in a variety of
// environments, either with or without APIs, to provide a
// consistent developer experience across different environments.
//
// Example uses of this error model include:
//
// - Partial errors. If a service needs to return partial errors to the client,
// it may embed the `Status` in the normal response to indicate the partial
// errors.
//
// - Workflow errors. A typical workflow has multiple steps. Each step may
// have a `Status` message for error reporting.
//
// - Batch operations. If a client uses batch request and batch response, the
// `Status` message should be used directly inside batch response, one for
// each error sub-response.
//
// - Asynchronous operations. If an API call embeds asynchronous operation
// results in its response, the status of those operations should be
// represented directly using the `Status` message.
//
// - Logging. If some API errors are stored in logs, the message `Status` could
// be used directly after any stripping needed for security/privacy reasons.
message Status {
// The status code, which should be an enum value of [google.rpc.Code][google.rpc.Code].
int32 code = 1;
// A developer-facing error message, which should be in English. Any
// user-facing error message should be localized and sent in the
// [google.rpc.Status.details][google.rpc.Status.details] field, or localized by the client.
string message = 2;
// A list of messages that carry the error details. There is a common set of
// message types for APIs to use.
repeated google.protobuf.Any details = 3;
}