package atlas import ( "fmt" "testing" "github.com/mdiluz/rove/pkg/maths" "github.com/mdiluz/rove/proto/roveapi" "github.com/stretchr/testify/assert" ) func TestAtlas_NewAtlas(t *testing.T) { a := NewChunkAtlas(1).(*chunkBasedAtlas) assert.NotNil(t, a) assert.Equal(t, 1, a.ChunkSize) assert.Equal(t, 1, len(a.Chunks)) // Should start empty } func TestAtlas_toChunk(t *testing.T) { a := NewChunkAtlas(1).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn the chunks a.QueryPosition(maths.Vector{X: -1, Y: -1}) a.QueryPosition(maths.Vector{X: 0, Y: 0}) assert.Equal(t, 2*2, len(a.Chunks)) // Chunks should look like: // 2 | 3 // ----- // 0 | 1 chunkID := a.worldSpaceToChunkIndex(maths.Vector{X: 0, Y: 0}) assert.Equal(t, 3, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 0, Y: -1}) assert.Equal(t, 1, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: -1, Y: -1}) assert.Equal(t, 0, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: -1, Y: 0}) assert.Equal(t, 2, chunkID) a = NewChunkAtlas(2).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn the chunks a.QueryPosition(maths.Vector{X: -2, Y: -2}) assert.Equal(t, 2*2, len(a.Chunks)) a.QueryPosition(maths.Vector{X: 1, Y: 1}) assert.Equal(t, 2*2, len(a.Chunks)) // Chunks should look like: // 2 | 3 // ----- // 0 | 1 chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 1, Y: 1}) assert.Equal(t, 3, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 1, Y: -2}) assert.Equal(t, 1, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: -2, Y: -2}) assert.Equal(t, 0, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: -2, Y: 1}) assert.Equal(t, 2, chunkID) a = NewChunkAtlas(2).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn a 4x4 grid of chunks a.QueryPosition(maths.Vector{X: 3, Y: 3}) assert.Equal(t, 2*2, len(a.Chunks)) a.QueryPosition(maths.Vector{X: -3, Y: -3}) assert.Equal(t, 4*4, len(a.Chunks)) // Chunks should look like: // 12| 13|| 14| 15 // ---------------- // 8 | 9 || 10| 11 // ================ // 4 | 5 || 6 | 7 // ---------------- // 0 | 1 || 2 | 3 chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 1, Y: 3}) assert.Equal(t, 14, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 1, Y: -3}) assert.Equal(t, 2, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: -1, Y: -1}) assert.Equal(t, 5, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: -2, Y: 2}) assert.Equal(t, 13, chunkID) a = NewChunkAtlas(3).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn a 4x4 grid of chunks a.QueryPosition(maths.Vector{X: 3, Y: 3}) assert.Equal(t, 2*2, len(a.Chunks)) // Chunks should look like: // || 2| 3 // ------- // || 0| 1 // ======= chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 1, Y: 1}) assert.Equal(t, 0, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 3, Y: 1}) assert.Equal(t, 1, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 1, Y: 4}) assert.Equal(t, 2, chunkID) chunkID = a.worldSpaceToChunkIndex(maths.Vector{X: 5, Y: 5}) assert.Equal(t, 3, chunkID) } func TestAtlas_toWorld(t *testing.T) { a := NewChunkAtlas(1).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn some chunks a.QueryPosition(maths.Vector{X: -1, Y: -1}) assert.Equal(t, 2*2, len(a.Chunks)) // Chunks should look like: // 2 | 3 // ----- // 0 | 1 assert.Equal(t, maths.Vector{X: -1, Y: -1}, a.chunkOriginInWorldSpace(0)) assert.Equal(t, maths.Vector{X: 0, Y: -1}, a.chunkOriginInWorldSpace(1)) a = NewChunkAtlas(2).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn the chunks a.QueryPosition(maths.Vector{X: -2, Y: -2}) assert.Equal(t, 2*2, len(a.Chunks)) a.QueryPosition(maths.Vector{X: 1, Y: 1}) assert.Equal(t, 2*2, len(a.Chunks)) // Chunks should look like: // 2 | 3 // ----- // 0 | 1 assert.Equal(t, maths.Vector{X: -2, Y: -2}, a.chunkOriginInWorldSpace(0)) assert.Equal(t, maths.Vector{X: -2, Y: 0}, a.chunkOriginInWorldSpace(2)) a = NewChunkAtlas(2).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn a 4x4 grid of chunks a.QueryPosition(maths.Vector{X: 3, Y: 3}) assert.Equal(t, 2*2, len(a.Chunks)) a.QueryPosition(maths.Vector{X: -3, Y: -3}) assert.Equal(t, 4*4, len(a.Chunks)) // Chunks should look like: // 12| 13|| 14| 15 // ---------------- // 8 | 9 || 10| 11 // ================ // 4 | 5 || 6 | 7 // ---------------- // 0 | 1 || 2 | 3 assert.Equal(t, maths.Vector{X: -4, Y: -4}, a.chunkOriginInWorldSpace(0)) assert.Equal(t, maths.Vector{X: 2, Y: -2}, a.chunkOriginInWorldSpace(7)) a = NewChunkAtlas(3).(*chunkBasedAtlas) assert.NotNil(t, a) // Get a tile to spawn a 4x4 grid of chunks a.QueryPosition(maths.Vector{X: 3, Y: 3}) assert.Equal(t, 2*2, len(a.Chunks)) // Chunks should look like: // || 2| 3 // ------- // || 0| 1 // ======= assert.Equal(t, maths.Vector{X: 0, Y: 0}, a.chunkOriginInWorldSpace(0)) } func TestAtlas_GetSetTile(t *testing.T) { a := NewChunkAtlas(10) assert.NotNil(t, a) // Set the origin tile and test it a.SetTile(maths.Vector{X: 0, Y: 0}, roveapi.Tile_Gravel) tile, _ := a.QueryPosition(maths.Vector{X: 0, Y: 0}) assert.Equal(t, roveapi.Tile_Gravel, tile) // Set another tile and test it a.SetTile(maths.Vector{X: 5, Y: -2}, roveapi.Tile_Rock) tile, _ = a.QueryPosition(maths.Vector{X: 5, Y: -2}) assert.Equal(t, roveapi.Tile_Rock, tile) } func TestAtlas_GetSetObject(t *testing.T) { a := NewChunkAtlas(10) assert.NotNil(t, a) // Set the origin tile to 1 and test it a.SetObject(maths.Vector{X: 0, Y: 0}, Object{Type: roveapi.Object_RockLarge}) _, obj := a.QueryPosition(maths.Vector{X: 0, Y: 0}) assert.Equal(t, Object{Type: roveapi.Object_RockLarge}, obj) // Set another tile to 1 and test it a.SetObject(maths.Vector{X: 5, Y: -2}, Object{Type: roveapi.Object_RockSmall}) _, obj = a.QueryPosition(maths.Vector{X: 5, Y: -2}) assert.Equal(t, Object{Type: roveapi.Object_RockSmall}, obj) } func TestAtlas_Grown(t *testing.T) { // Start with a small example a := NewChunkAtlas(2).(*chunkBasedAtlas) assert.NotNil(t, a) assert.Equal(t, 1, len(a.Chunks)) // Set a few tiles to values a.SetTile(maths.Vector{X: 0, Y: 0}, roveapi.Tile_Gravel) a.SetTile(maths.Vector{X: -1, Y: -1}, roveapi.Tile_Rock) a.SetTile(maths.Vector{X: 1, Y: -2}, roveapi.Tile_Sand) // Check tile values tile, _ := a.QueryPosition(maths.Vector{X: 0, Y: 0}) assert.Equal(t, roveapi.Tile_Gravel, tile) tile, _ = a.QueryPosition(maths.Vector{X: -1, Y: -1}) assert.Equal(t, roveapi.Tile_Rock, tile) tile, _ = a.QueryPosition(maths.Vector{X: 1, Y: -2}) assert.Equal(t, roveapi.Tile_Sand, tile) tile, _ = a.QueryPosition(maths.Vector{X: 0, Y: 0}) assert.Equal(t, roveapi.Tile_Gravel, tile) tile, _ = a.QueryPosition(maths.Vector{X: -1, Y: -1}) assert.Equal(t, roveapi.Tile_Rock, tile) tile, _ = a.QueryPosition(maths.Vector{X: 1, Y: -2}) assert.Equal(t, roveapi.Tile_Sand, tile) } func TestAtlas_GetSetCorrect(t *testing.T) { // Big stress test to ensure we do actually properly expand for all reasonable values for i := 1; i <= 4; i++ { for x := -i * 2; x < i*2; x++ { for y := -i * 2; y < i*2; y++ { a := NewChunkAtlas(i).(*chunkBasedAtlas) assert.NotNil(t, a) assert.Equal(t, 1, len(a.Chunks)) pos := maths.Vector{X: x, Y: y} a.SetTile(pos, roveapi.Tile_Rock) a.SetObject(pos, Object{Type: roveapi.Object_RockLarge}) tile, obj := a.QueryPosition(pos) assert.Equal(t, roveapi.Tile_Rock, roveapi.Tile(tile)) assert.Equal(t, Object{Type: roveapi.Object_RockLarge}, obj) } } } } func TestAtlas_WorldGen(t *testing.T) { a := NewChunkAtlas(8) // Spawn a large world _, _ = a.QueryPosition(maths.Vector{X: 20, Y: 20}) // Print out the world for manual evaluation num := 20 for j := num - 1; j >= 0; j-- { for i := 0; i < num; i++ { t, o := a.QueryPosition(maths.Vector{X: i, Y: j}) if o.Type != roveapi.Object_ObjectNone { fmt.Printf("%c", ObjectGlyph(o.Type)) } else if t != roveapi.Tile_TileNone { fmt.Printf("%c", TileGlyph(t)) } else { fmt.Printf(" ") } } fmt.Print("\n") } }