rove/pkg/rove/world.go

630 lines
15 KiB
Go

package rove
import (
"fmt"
"log"
"math/rand"
"sync"
"github.com/mdiluz/rove/pkg/maths"
"github.com/mdiluz/rove/proto/roveapi"
)
const (
// ticksPerNormalMove defines the number of ticks it should take for a "normal" speed move
ticksPerNormalMove = 4
)
// CommandStream is a list of commands to execute in order
type CommandStream []*roveapi.Command
// World describes a self contained universe and everything in it
type World struct {
// TicksPerDay is the amount of ticks in a single day
TicksPerDay int
// Current number of ticks from the start
CurrentTicks int
// Rovers is a id->data map of all the rovers in the game
Rovers map[string]*Rover
// Atlas represends the world map of chunks and tiles
Atlas Atlas
// Wind is the current wind direction
Wind roveapi.Bearing
// Commands is the set of currently executing command streams per rover
CommandQueue map[string]CommandStream
// Mutex to lock around all world operations
worldMutex sync.RWMutex
// Mutex to lock around command operations
cmdMutex sync.RWMutex
}
// NewWorld creates a new world object
func NewWorld(chunkSize int) *World {
return &World{
Rovers: make(map[string]*Rover),
CommandQueue: make(map[string]CommandStream),
Atlas: NewChunkAtlas(chunkSize),
TicksPerDay: 24,
CurrentTicks: 0,
}
}
// SpawnRover adds an rover to the game
func (w *World) SpawnRover() (string, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
// Initialise the rover
rover := DefaultRover()
// Spawn in a random place near the origin
rover.Pos = maths.Vector{
X: 10 - rand.Intn(20),
Y: 10 - rand.Intn(20),
}
// Seach until we error (run out of world)
for {
_, obj := w.Atlas.QueryPosition(rover.Pos)
if !obj.IsBlocking() {
break
} else {
// Try and spawn to the east of the blockage
rover.Pos.Add(maths.Vector{X: 1, Y: 0})
}
}
// Add a log entry for robot creation
rover.AddLogEntryf("created at %+v", rover.Pos)
// Append the rover to the list
w.Rovers[rover.Name] = rover
return rover.Name, nil
}
// GetRover gets a specific rover by name
func (w *World) GetRover(rover string) (Rover, error) {
w.worldMutex.RLock()
defer w.worldMutex.RUnlock()
i, ok := w.Rovers[rover]
if !ok {
return Rover{}, fmt.Errorf("Failed to find rover with name: %s", rover)
}
return *i, nil
}
// RoverRecharge charges up a rover
func (w *World) RoverRecharge(rover string) (int, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
i, ok := w.Rovers[rover]
if !ok {
return 0, fmt.Errorf("Failed to find rover with name: %s", rover)
}
// We can only recharge during the day
if !w.Daytime() {
return i.Charge, nil
}
// Add one charge
if i.Charge < i.MaximumCharge {
i.Charge++
i.AddLogEntryf("recharged to %d", i.Charge)
}
return i.Charge, nil
}
// RoverBroadcast broadcasts a message to nearby rovers
func (w *World) RoverBroadcast(rover string, message []byte) (err error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
i, ok := w.Rovers[rover]
if !ok {
return fmt.Errorf("Failed to find rover with name: %s", rover)
}
// Use up a charge as needed, if available
if i.Charge == 0 {
return
}
i.Charge--
// Check all rovers
for r, rover := range w.Rovers {
if rover.Name == i.Name {
continue
}
// Check if this rover is within range
if i.Pos.Distance(rover.Pos) < float64(i.Range) {
rover.AddLogEntryf("recieved %s from %s", string(message), i.Name)
w.Rovers[r] = rover
}
}
i.AddLogEntryf("broadcasted %s", string(message))
return
}
// DestroyRover Removes an rover from the game
func (w *World) DestroyRover(rover string) error {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
_, ok := w.Rovers[rover]
if !ok {
return fmt.Errorf("no rover matching id")
}
delete(w.Rovers, rover)
return nil
}
// RoverPosition returns the position of the rover
func (w *World) RoverPosition(rover string) (maths.Vector, error) {
w.worldMutex.RLock()
defer w.worldMutex.RUnlock()
i, ok := w.Rovers[rover]
if !ok {
return maths.Vector{}, fmt.Errorf("no rover matching id")
}
return i.Pos, nil
}
// SetRoverPosition sets the position of the rover
func (w *World) SetRoverPosition(rover string, pos maths.Vector) error {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
i, ok := w.Rovers[rover]
if !ok {
return fmt.Errorf("no rover matching id")
}
i.Pos = pos
return nil
}
// RoverInventory returns the inventory of a requested rover
func (w *World) RoverInventory(rover string) ([]Object, error) {
w.worldMutex.RLock()
defer w.worldMutex.RUnlock()
i, ok := w.Rovers[rover]
if !ok {
return nil, fmt.Errorf("no rover matching id")
}
return i.Inventory, nil
}
// WarpRover sets an rovers position
func (w *World) WarpRover(rover string, pos maths.Vector) error {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
i, ok := w.Rovers[rover]
if !ok {
return fmt.Errorf("no rover matching id")
}
// Nothing to do if these positions match
if i.Pos == pos {
return nil
}
// Check the tile is not blocked
_, obj := w.Atlas.QueryPosition(pos)
if obj.IsBlocking() {
return fmt.Errorf("can't warp rover to occupied tile, check before warping")
}
i.Pos = pos
return nil
}
// TryMoveRover attempts to move a rover in a specific direction
func (w *World) TryMoveRover(rover string, b roveapi.Bearing) (maths.Vector, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
i, ok := w.Rovers[rover]
if !ok {
return maths.Vector{}, fmt.Errorf("no rover matching id")
}
// Try the new move position
newPos := i.Pos.Added(maths.BearingToVector(b))
// Get the tile and verify it's empty
_, obj := w.Atlas.QueryPosition(newPos)
if !obj.IsBlocking() {
i.AddLogEntryf("moved %s to %+v", b.String(), newPos)
// Perform the move
i.Pos = newPos
} else {
// If it is a blocking tile, reduce the rover integrity
i.AddLogEntryf("tried to move %s to %+v", b.String(), newPos)
i.Integrity = i.Integrity - 1
i.AddLogEntryf("had a collision, new integrity %d", i.Integrity)
// TODO: The rover needs to be left dormant with the player
//if i.Integrity == 0 {
//}
}
return i.Pos, nil
}
// RoverStash will stash an item at the current rovers position
func (w *World) RoverStash(rover string) (roveapi.Object, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
r, ok := w.Rovers[rover]
if !ok {
return roveapi.Object_ObjectUnknown, fmt.Errorf("no rover matching id")
}
// Can't pick up when full
if len(r.Inventory) >= r.Capacity {
return roveapi.Object_ObjectUnknown, nil
}
// Ensure the rover has energy
if r.Charge <= 0 {
return roveapi.Object_ObjectUnknown, nil
}
r.Charge--
_, obj := w.Atlas.QueryPosition(r.Pos)
if !obj.IsStashable() {
return roveapi.Object_ObjectUnknown, nil
}
r.AddLogEntryf("stashed %c", obj.Type)
r.Inventory = append(r.Inventory, obj)
w.Atlas.SetObject(r.Pos, Object{Type: roveapi.Object_ObjectUnknown})
return obj.Type, nil
}
// RoverToggle will toggle the sail position
func (w *World) RoverToggle(rover string) (roveapi.SailPosition, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
r, ok := w.Rovers[rover]
if !ok {
return roveapi.SailPosition_UnknownSailPosition, fmt.Errorf("no rover matching id")
}
// Swap the sail position
switch r.SailPosition {
case roveapi.SailPosition_CatchingWind:
r.SailPosition = roveapi.SailPosition_SolarCharging
case roveapi.SailPosition_SolarCharging:
r.SailPosition = roveapi.SailPosition_CatchingWind
}
// Reset the movement ticks
r.MoveTicks = 0
return r.SailPosition, nil
}
// RoverTurn will turn the rover
func (w *World) RoverTurn(rover string, bearing roveapi.Bearing) (roveapi.Bearing, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
r, ok := w.Rovers[rover]
if !ok {
return roveapi.Bearing_BearingUnknown, fmt.Errorf("no rover matching id")
}
// Set the new bearing
r.Bearing = bearing
// Reset the movement ticks
r.MoveTicks = 0
return r.Bearing, nil
}
// RoverRepair will turn the rover
func (w *World) RoverRepair(rover string) (int, error) {
w.worldMutex.Lock()
defer w.worldMutex.Unlock()
r, ok := w.Rovers[rover]
if !ok {
return 0, fmt.Errorf("no rover matching id")
}
// Can't repair past max
if r.Integrity >= r.MaximumIntegrity {
return r.Integrity, nil
}
// Find rover parts in inventory
for i, o := range r.Inventory {
if o.Type == roveapi.Object_RoverParts {
// Copy-erase from slice
r.Inventory[i] = r.Inventory[len(r.Inventory)-1]
r.Inventory = r.Inventory[:len(r.Inventory)-1]
// Repair
r.Integrity = r.Integrity + 1
r.AddLogEntryf("repaired self to %d", r.Integrity)
break
}
}
return r.Integrity, nil
}
// RadarFromRover can be used to query what a rover can currently see
func (w *World) RadarFromRover(rover string) (radar []roveapi.Tile, objs []roveapi.Object, err error) {
w.worldMutex.RLock()
defer w.worldMutex.RUnlock()
r, ok := w.Rovers[rover]
if !ok {
err = fmt.Errorf("no rover matching id")
return
}
// The radar should span in range direction on each axis, plus the row/column the rover is currently on
radarSpan := (r.Range * 2) + 1
roverPos := r.Pos
// Get the radar min and max values
radarMin := maths.Vector{
X: roverPos.X - r.Range,
Y: roverPos.Y - r.Range,
}
radarMax := maths.Vector{
X: roverPos.X + r.Range,
Y: roverPos.Y + r.Range,
}
// Gather up all tiles within the range
radar = make([]roveapi.Tile, radarSpan*radarSpan)
objs = make([]roveapi.Object, radarSpan*radarSpan)
for j := radarMin.Y; j <= radarMax.Y; j++ {
for i := radarMin.X; i <= radarMax.X; i++ {
q := maths.Vector{X: i, Y: j}
tile, obj := w.Atlas.QueryPosition(q)
// Get the position relative to the bottom left of the radar
relative := q.Added(radarMin.Negated())
index := relative.X + relative.Y*radarSpan
radar[index] = tile
objs[index] = obj.Type
}
}
// Add all rovers to the radar
for _, r := range w.Rovers {
// If the rover is in range
dist := r.Pos.Added(roverPos.Negated())
dist = dist.Abs()
if dist.X <= r.Range && dist.Y <= r.Range {
relative := r.Pos.Added(radarMin.Negated())
index := relative.X + relative.Y*radarSpan
objs[index] = roveapi.Object_RoverLive
}
}
return radar, objs, nil
}
// RoverCommands returns current commands for the given rover
func (w *World) RoverCommands(rover string) (queued CommandStream) {
if c, ok := w.CommandQueue[rover]; ok {
queued = c
}
return
}
// Enqueue will queue the commands given
func (w *World) Enqueue(rover string, commands ...*roveapi.Command) error {
// First validate the commands
for _, c := range commands {
switch c.Command {
case roveapi.CommandType_broadcast:
if len(c.GetData()) > 3 {
return fmt.Errorf("too many characters in message (limit 3): %d", len(c.GetData()))
}
for _, b := range c.GetData() {
if b < 37 || b > 126 {
return fmt.Errorf("invalid message character: %c", b)
}
}
case roveapi.CommandType_turn:
if c.GetBearing() == roveapi.Bearing_BearingUnknown {
return fmt.Errorf("turn command given unknown bearing")
}
case roveapi.CommandType_toggle:
case roveapi.CommandType_stash:
case roveapi.CommandType_repair:
// Nothing to verify
default:
return fmt.Errorf("unknown command: %s", c.Command)
}
}
// Lock our commands edit
w.cmdMutex.Lock()
defer w.cmdMutex.Unlock()
w.CommandQueue[rover] = commands
return nil
}
// Tick will execute any commands in the current command queue and tick the world
func (w *World) Tick() {
w.cmdMutex.Lock()
defer w.cmdMutex.Unlock()
// Iterate through all the current commands
for rover, cmds := range w.CommandQueue {
if len(cmds) != 0 {
// Execute the command
if err := w.ExecuteCommand(cmds[0], rover); err != nil {
log.Println(err)
// TODO: Report this error somehow
}
// Extract the first command in the queue
w.CommandQueue[rover] = cmds[1:]
} else {
// Clean out the empty entry
delete(w.CommandQueue, rover)
}
}
// Change the wind every day
if (w.CurrentTicks % w.TicksPerDay) == 0 {
w.Wind = roveapi.Bearing((rand.Int() % 8) + 1) // Random cardinal bearing
}
// Move all the rovers based on current wind and sails
for n, r := range w.Rovers {
// Skip if we're not catching the wind
if r.SailPosition != roveapi.SailPosition_CatchingWind {
continue
}
// Increment the current move ticks
r.MoveTicks++
// Get the difference between the two bearings
// Normalise, we don't care about clockwise/anticlockwise
diff := maths.Abs(int(w.Wind - r.Bearing))
if diff > 4 {
diff = 8 - diff
}
// Calculate the travel "ticks"
var ticksToMove int
switch diff {
case 0:
// Going with the wind, travel at base speed of once every 4 ticks
ticksToMove = ticksPerNormalMove
case 1:
// At a slight angle, we can go a little faster
ticksToMove = ticksPerNormalMove / 2
case 2:
// Perpendicular to wind, max speed
ticksToMove = 1
case 3:
// Heading at 45 degrees into the wind, back to min speed
ticksToMove = ticksPerNormalMove
case 4:
// Heading durectly into the wind, no movement at all
default:
log.Fatalf("bearing difference of %d should be impossible", diff)
}
// If we've incremented over the current move ticks on the rover, we can try and make the move
if ticksToMove != 0 && r.MoveTicks >= ticksToMove {
_, err := w.TryMoveRover(n, r.Bearing)
if err != nil {
log.Println(err)
// TODO: Report this error somehow
}
// Reset the move ticks
r.MoveTicks = 0
}
}
// Increment the current tick count
w.CurrentTicks++
}
// ExecuteCommand will execute a single command
func (w *World) ExecuteCommand(c *roveapi.Command, rover string) (err error) {
log.Printf("Executing command: %+v for %s\n", c.Command, rover)
switch c.Command {
case roveapi.CommandType_toggle:
if _, err := w.RoverToggle(rover); err != nil {
return err
}
case roveapi.CommandType_stash:
if _, err := w.RoverStash(rover); err != nil {
return err
}
case roveapi.CommandType_repair:
if _, err := w.RoverRepair(rover); err != nil {
return err
}
case roveapi.CommandType_broadcast:
if err := w.RoverBroadcast(rover, c.GetData()); err != nil {
return err
}
case roveapi.CommandType_turn:
if _, err := w.RoverTurn(rover, c.GetBearing()); err != nil {
return err
}
default:
return fmt.Errorf("unknown command: %s", c.Command)
}
return
}
// Daytime returns if it's currently daytime
// for simplicity this uses the 1st half of the day as daytime, the 2nd half as nighttime
func (w *World) Daytime() bool {
tickInDay := w.CurrentTicks % w.TicksPerDay
return tickInDay < w.TicksPerDay/2
}
// RLock read locks the world
func (w *World) RLock() {
w.worldMutex.RLock()
w.cmdMutex.RLock()
}
// RUnlock read unlocks the world
func (w *World) RUnlock() {
w.worldMutex.RUnlock()
w.cmdMutex.RUnlock()
}
// Lock locks the world
func (w *World) Lock() {
w.worldMutex.Lock()
w.cmdMutex.Lock()
}
// Unlock unlocks the world
func (w *World) Unlock() {
w.worldMutex.Unlock()
w.cmdMutex.Unlock()
}